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SUMMARY 

A statistical model of component-peak overlap in complex chromatograms is 
reviewed. Procedures for the estimation of the number of components in an analyte 
from its chromatograms by means of this model are restated. We note that the sta- 
tistical model does not account for the effects of certain realistic chromatographic 
attributes. The influences of component-peak density, amplitude range, asymmetry, 
and noise levels on the estimation of the average component number are determined 
empirically with computer-generated chromatograms and are quantified by analyses 
of variance. We find that small departures from the model arise from variations in 
the magnitude of the amplitude range, density and the noise level. A large departure 
from theory arises from an application of the model to chromatograms containing 
highly asymmetric component-peaks. In spite of these departures, the estimation of 
the component number from chromatograms containing randomly distributed 
Gaussian component-peaks is uniformly more accurate with the use of the model 
than from a counting of peak maxima in chromatograms of extraordinarily high 
resolving power. 

INTRODUCTION 

In a recent paper, the authors presented a simple statistical model predicting 
the degree of component-peak overlap in complex chromatograms containing ran- 
domly spaced components ‘. In a later publication, the essential correctness of the 
results predicted by the model were verified by a computer generation of complex, 
synthetic chromatograms 2. In particular, the simulation results confirmed the validity 
of a proposed procedure for estimating the number of components in an analyte 
from a series of its chromatograms, all having substantial component overlap. 

The model of component-peak overlap is derived from Poisson point statistics 
with the implicit assumption that each component maximum (or center of gravity) 
may be represented by a point positioned on an elution volume or time axis’. This 
assumption does not provide any theoretical description of certain complicating but 
realistic chromatographic attributes and of their effects on the results predicted by 
our model. These attributes are principally the relative amplitude range of the com- 
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ponents, density; noise, baseline stability and component-peak asymmetry. The se- 
verity of their influence on the predicted results will determine the overall usefulness 
of the model to chromatographic science. 

We have successfully established two methods for the estimation of the number 
of components (many of them hidden by overlap with other components) in synthetic 
chromatograms 2, We shall now augment this work and determine empirically the 
effects of noise, amplitude range, density and component-peak asymmetry on the 
results predicted by the application of these two procedures. We shall assume that 
the determination of the number of components in a complex analyte is one of the 
primary applications of our model and shall, in this paf)er, restrict our study to the 
authenticity of this number. Computer simulations are used in lieu of experimental 
chromatograms because, with the former, exact control over the statistical distribu- 
tion and the properties of the component-peaks is possible2. To determine quanti- 
tatively the magnitude and significance of any departures from the model, we shall 
use the method of analysis of variance (ANOVA). 

THEORY 

Peak overlap 
The number of observed peaks (“peaks”), p, in a chromatogram containing 

randomly distributed components is related to the mean or expected number of com- 
ponents, tFr, and to the peak capacity, n,, by’s2 

or, in reduced form, 

p = n, ue-= (2) 

in which case the saturation factor, LX, equal to +i/n,, is a measure of the saturation 
of the separation space by the components. The peak capacity, n,, is the maximum 
number of component-peaks which can be accommodated in the chromatogram with 
some minimum resolution between adjacent component-peaks. Eqn. 1 may be lin- 
earized by taking logarithms of both sides, viz., 

In p = In fi - +nc (3) 

We have suggested’ and confirmed* that plots of the logarithm of the number of 
visually determined peaks versus reciprocal peak capacity provide reasonable esti- 
mates of A from both slope and intercept. Our data were drawn from the interpre- 
tation of computer-generated chromatograms containing randomly spaced Gaussian 
components. 

We shall assume that our hypothesis of random component distribution is 
valid in this paper. We have noted that this hypothesis is not applicable in all chro- 
matograms and that some chromatograms are highly ordered’ .*. The distribution of 
peaks in many complex chromatograms is nevertheless unstructured. We must char- 
acterize the departures from our model which arise from the chromatographic attri- 
butes previously cited before we can separate them from departures which arise from 
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a nonrandom distribution of components. 
The number of peaks, p, is a function of the peak capacity, n,, which is deter- 

mined by the total separation space, X, over which the model applies, the average 
standard deviation, cr, of two adjacent components and the critical resolution, R:, 
which is needed to discriminate between peaks: 

x x 
nc=-=- 

x0 4aK 

where x0 is the minimum distance between adjacent peaks yielding the minimum 
acceptable resolution, &. 

In the context of our model, a peak is “a detected cluster of one or more 
components in which the first and last components in the cluster are separated by 
components adjacent to the cluster by a resolution greater than or equal to K and 
in which each member of the cluster is separated from adjacent members of the 
cluster by a resolution of less than R:’ (ref. 2). High-resolution chromatographic 

maxima may be peaks in this context with a proper choice of resolution. One of our 
peak-counting procedures is based on this possibility. It is important to recognize, 
however, that this choice is only one of many possible alternatives. 

The dependence of the magnitude of & on relative component amplitude has 
been noted*. Our success in the estimation of ti from baseline-resolved peak counts, 
with R: = 1.5, was reported2. While these counts are virtually independent of the 
relative component amplitude, the problems of baseline drift, noise and the statistics 
of peak counting preclude baseline resolution as the optimal counting procedure”. 
We also reported that a meaningful empirical value of R: was calculable with the 
proper fitting of maxima peak counts to a least-squares procedure2. In this procedure, 
an effective saturation, equal to &m/X, was calculated from the known mean com- 
ponent number. A plot of the logarithm of the maxima count vusus this effective 
saturation was made. An examination of eqns. 3 and 4 reveals that the resolution 
factor, &:, is calculated as a slope from this procedure. The factor R: is the mean 
resolution with which maxima are distinguishable and is reasonably postulated to be 
a function of relative component-peak amplitude, density range, symmetry and noise 
levels. We then confirmed that this empirical value could be used to determine n, 
and, by eqn. 3, fi from slope and intercept over a given component amplitude and 
density range and for a given level of noise. 

Analysis of variance 
The analysis of variance (ANOVA), as developed by Fisher, is a systematic 

means by which one may determine if one or more groups of data statistically differ 
from one or more other groups of data. This methodology is an indispensable sta- 
tistical tool which, in the hands of the chemist, physicist and biologist, provides an 
added dimension and insight into the nature of variation in natural events3. 

In this work, we will determine ti from synthetic chromatograms generated 
with different amplitude ranges, densities (a), asymmetries and noise levels. We will 
then use ANOVA techniques to decide if the determined A values are significantly 
affected by variations in these attributes. We will utilize two forms of the Model I 
ANOVA. In a Model I ANOVA, it is assumed that differences in the means of the 
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data groups under-study arise from fixed and clearly definable differences among the 
data groups3. The simplest procedure is the single classification or one-way ANOVA 
in which the significance of one source of variation is determined with respect to all 
other sources of variation. As an example, one can determine with a one-way 
ANOVA if the values of an analyte level reported from different laboratories are sta- 
tistically equivalent. The second procedure is a one-way nested ANOVA in which 
the members of each data group also vary due to random (and usually uncontrol- 
lable) factors. One may use this procedure to determine if variations within groups, 
arising from random factors, are significant relative to the variations among the main 
groups arising from the fixed differences. As an example, one might study the per- 
centage weight increase in two groups of mice which are fed two different food sup- 
plements. Since the mice are genetically different, some will inherently grow more 
rapidly than others on either food supplement. The experimentalist has no control 
over the genetic factors which influence growth rate. With a nested ANOVA, how- 
ever, the magnitudes of the variation in growth within and between the groups can 
be properly compared to determine if one supplement significantly influences the 
growth rate over the other. 

Our groups are composed of data calculated from applications of the two 
counting procedures. Five classes of data may be defined. Estimates of ti may be 
computed as the slope (a) and the intercept (b) from an application of the baseline 
counting procedure and as the intercept (c) from the application of the maxima 
counting procedure. Empirical resolution factors (d) are computed as a slope from 
the application of the maxima counting procedure. A procedure (e) for the estimation 
of 6 based on point chromatograms will be briefly discussed. 

The physical meaning of the one-way ANOVAs computed in this paper is now 
discussed. We shall propose a null hypothesis that the data within all groups are 
drawn from the same parent population. The variance of the parent distribution is 
then calculable in two-ways. One method is to compute a weighted sum of squares 
(SS) based on the individual and calculable variances of each group. The SS is the 
sum of the squared deviations of the members of the group with respect to the group 
mean. The weighting factor for each group variance is the number of degrees of 
freedom in the group. The second method is to compute a SS from the mean values 
of each group with respect to the mean value of the entire data. When the SS are 
properly weighted by the number of degrees of freedom in the calculations, they 
become estimates of the variance of the parent population. These quantities will not 
necessarily be equal but will be similar in magnitude if our assumption of a single 
parent distribution is correct. If any measurable systematic variation among the 
groups is present, the group means will be dissimilar. The variance calculated from 
the means of each group, or the variance among groups, is then larger than the 
weighted variance, or variance within groups, calculated from the variances of each 
group. 

If the ratio of these variances exceeds a critical Fisher ratio F, we may state 
that, within some quantitative degree of certainty expressed as a confidence limit, the 
two variances are not measures of the breadth of the same parent population, the 
fixed and definable differences among the groups are measurable, and differences 
among the groups exist. The test is labeled significant if this condition is met. 

We will conform our symbolism to the standard conventions of the literature. 
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The mean squares (MS) are the sums of squares of a group divided by the degrees 
of freedom (df) in the calculation. The calculated Fisher ratio (I;) is computed by the 
ratio of the mean squares among groups to the mean squares within groups. The 
critical value from the distribution, against which comparisons are made, is Fy[vlr 
VZ], in which VI and v2 are the degrees of freedom among groups and within groups, 
respectively, and y is the area of the normalized distribution to the right of the F 
value (the symbol o! is normally used for this area, but we have adopted this symbol 
for our saturation factor). A simple symbolism for the 95% confidence level which 
we shall use is F”. Ref. 4 may be consulted for tabulated values of P. All ANOVA 
computations utilize one-tailed F tests, and the calculated Fisher ratios may be less 
than unity. An ANOVA which is not significant (NS) confirms the null hypothesis 
that the data are drawn from the same population. 

A prerequisite for the correct and meaningful application of ANOVA is ho- 
mogeneity among the variances of the compared groups or homoscedasticity. Bart- 
lett’s test for homogeneity is applied to all ANOVAs presented in this paper. For 
those ANOVAs which are inherently heteroscedastic, Snedecor’s procedure is used 
to approximate an ANOVA. The reader may find details on all these procedures in 
ref. 3. 

PROCEDURES AND METHODS 

The calculation of Gaussian component-peaks, the generation of Gaussian 
noise and the production of the synthetic chromatograms with a Versatek plotter 
were discussed in detail in ref. 2. In addition, the generation of tailing asymmetric 
component-peaks is conveniently made via exponentially convoluted Gaussians. The 
amplitude h(t) of a computer-generated chromatogram of tailing component-peaks 
is given by the following sum of convolution integralss: 

m 

h(t) = B + ; + 
n= 1 J2x CJntn s [ exp 

0 

-“-~~~- 1’)2]exp[$)drf (5) 

An equivalent and computationally convenient equation is 

(6) 

With reference to the nth component, A, is the amplitude of the pure Gaussian 
component at time t = t,,, tm is the component retention time, cr. is the pure com- 
ponent standard deviation in time units, tn is the exponential dilution time constant, 
B is the baseline offset amplitude and m is the total number of components. 
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Fig, 1. Fifty exponentially convoluted Gaussian components with u/r = 0.35. Amplitude range: 30 4500 

ADCs. (r = 4 sec. 

Fig. 1 is a computer simulation of 50 exponentially convoluted Gaussian com- 
ponents which are randomly spaced over 40 min with D = 4 set and a/~ = 0.35. The 
departure of the overlapping components from Gaussian shape is significant and 
increases as the ratio o/z decreases. The severity of component-peak overlap is illus- 
trated via the visual detection of only 34 maxima. 

The amplitudes of the components were chosen randomly to simulate chro- 
matograms in a very general manner. (While the component-peak amplitude range 
is a variable of interest, only the amplitudes of the components themselves can be 
conveniently controlled.) The standard deviations, 0, of the components were iden- 
tical in a given simulation to model the approximately constant component-peak 
widths observed in programmed analyses. The U/Z ratio was held constant in the 
computation of convoluted Gaussians to model a column or detector inefficiency 
which acts as a dilution chamber. The kinetics of adsorption chromatography are 
not well modeled by this procedure6. 

The methodology for counting baseline-resolved peaks and peak maxima has 
been published2. Additional synthetic chromatograms were produced to augment 
this earlier study. To obtain estimates of ti via eqn. 3, five chromatograms, each of 
which contained the same component distribution resolved to a different level, were 
generated to produce five data points for the In p wxsus l/no plot. The data consisted 
of the number of visually determined peaks at a given peak capacity. The five chro- 
matograms were composed of components with respective standard deviations of 12, 
10, 8, 6 and 4 sec. 

The fifth class of data groups (e) is composed of estimations of +I from “point 
chromatograms”. A series of point chromatograms was generated to determine the 
effects of amplitude on our predicted results. These were composed of randomly 
chosen retention times only. No amplitudes were assigned. The number of “ob- 
served” peaks was determined by counting the number of adjacent retention time 
differences which exceeded the value x0 representing the given level of efficiency. 
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The data were fitted to eqn. 3 by the procedure of least squares. The weight 
of each peak count, in accordance with Poisson statistics and the required transfor- 
mation from the exponential dependence of eqn. 1 to the linear dependence of eqn. 
3, was the peak count itself. The variances in slope and intercept were calculable 
from least-squares equations4. 

The statistical uncertainties in both slope and intercept do not enter into our 
ANOVA computations. The validity of the ANOVA procedure rests on the stipu- 
lation that each datum carries the same statistical weight. Each slope, intercept or 
empirical resolution value carried a weight of unity in our calculations. 

Characterization of the simulated chromatograms 
Table I contains the information required to characterize the generated syn- 

thetic chromatograms. The contents of the second column identify the set members 
as synthetic component-peak chromatograms or point chromatograms. The third 
column contains the number of simulation series, each of which is composed of five 
chromatograms, created for that particular set. Although the intercept of the plot 
stemming from eqn. 3 has the value In ti, we shall loosely use the word “intercept” 
to refer to fi directly. The reported standard deviations in the final columns are based 
on the arithmetic means of the calculated fi and R: values. 

The remaining columns are self-explanatory, but the units need clarification. 
The noise level is the standard deviation of Gaussian noise in analog-to-digital (ADC) 
units as discussed in ref. 2. The minimum and maximum component amplitudes are 
also given in ADC units. The minimum amplitude value of 10 ADCs corresponded 
to 0.02 in. in our synthetic chromatograms. The values of c1 are measures of the 
component-peak density and are defined by eqns. 2 and 4 with the arbitrary value 

R*, = 1.5. 
The data sets that were partially analyzed in ref. 2 are indicated by an asterisk. 

Description of AN0 VA procedures 
Table II contains the nine general ANOVA procedures conducted on the data 

in Table I. The letters of the compared sets lie to the left of a colon in the third 
column. The data examined were estimates of @I from slope and intercept and em- 
pirical resolution factors. These are symbolically indicated as 9, In and R_ respec- 
tively. These symbols lie to the right of the colon in the third column. The remaining 
columns are self-explanatory. 

Baseline peak counts using the critical resolution R: = 1.5 are not completely 
independent of amplitude. The relative minimum value of the amplitude envelope 
between two components separated by six average standard deviations may not co- 
incide with the baseline. The degree of coincidence is determined by the relative 
amplitude range, baseline stability, noise, component-peak asymmetry and visual 

acumen. 
ANOVA I was performed to determine if the presence of amplitude differences 

influences the number of visually determined peaks as postulated in ref. 2. Any de- 
parture from the model arising from the effects of amplitude differences should in- 
crease with high levels of noise because the error in the determination of the number 
of baseline-resolved peaks increases. Therefore, ANOVA II was computed to deter- 
mine firstly if a visual estimation of the number of baseline peaks is influenced by 
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Gaussian noise sufficiently to yield significantly different estimates of rii. The possible 
acceptance of the null hypothesis, on the basis of the Fisher ratio, in ANOVA II 
does not imply that the results are consistent with the point model. The possible 
insignificance of the Fisher ratio calculated from ANOVA II implies only that the 
results predicted from a counting of noiseless and noisy Gaussian baseline-resolved 
peaks are comparable. Therefore, ANOVA III was calculated to determine if the 
results predicted from a series of noisy simulations are comparable to results pre- 

dicted from the point chromatograms. Finally, ANOVA IV is an assessment of the 
magnitude of departure introduced by component-peak tailing (convolution). 

The magnitude of the empirical value R, is determined and limited by the 
chromatographer’s ability to distinguish maxima. ANOVAs V, VI and VII are as- 
sessments of the respective effects of component-peak density, amplitude range and 
noise on the magnitude of &. ANOVA VIII is an evaluation of the effects of com- 
ponent-peak tailing on Rz. 

Finally, a comparison of the intercepts predicted by both counting methods 

TABLE II 

ANOVAs PERFORMED ON SETS A-N 

AN0 VA 
number 

Type Variable ANOVA 
groupings 

Homosce- 
dasticity 

SigniJcance, 95% 
conjdence level 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

One-way 

One-way; 
nested 
One-way; 
nested 

One-way; 
nested 

One-way 

One-way 

One-way; 
nested 
One-way; 
nested 
One-way 

Gaussian 
amplitude 

Noise 

Irreducible 
amplitude 
and noise 
Convoluted 
Gaussian 
amplitude 
Component 
density 
Component 
amplitude 
Noise 

Convolution 

Intercept 
calculation 

(a) A,B:Sl,In 
(b) C,D:SI,In 
(c) J,K:Sl,In 
(d) L,M:Sl,In 

C,E,F:Sl,In 

(a) D,E:Sl,In 
(b) D,F:Sl,In 

C,G:Sl,In 

A,C,K,L:& 

C,H,I:x 

C,E,F:R: 

C,G:K 

(a) Ah 
(b) C:In 
(c) E:In 
(d) F:In 
(e) G:In 
(Q J:In 
(g) L:In 

(a) Yes 
(b) Yes 
(c) Yes 
(d) Yes 

Yes 

(a) Yes 
(b) No 

No 

No NS 

Yes 

Yes 

Yes 

(a) Yes 
(b) Yes 
(c) Yes 
(d) Yes 
(e) No 
(0 Yes 
(g) Yes 

(4 NS 
@I NS 
(4 NS 
(d) For slope: F = 7.69; 
F1,16 = 4.50 
For slope: F = 3.73, 
fi.27 = 3.36 

(a) NS 
(b) For intercept: F = 5.12; 
fi,l6 = 4.50 
For slope: F = 167.74; 
F 1.8 = 5.32 

NS 

For slope: F + 4.05; 
F2.2, = 3.36 
For slope: F = 33.60 
F!,lS = 4.43 
(a) NS 
(b) NS 
(c) NS 
(d) For intercept: F = 8.85; 
Fl.16 = 4.50 
(e) NS 
(0 NS 
(g) For intercept: F = 14.08; 
F I,16 = 4.50 
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is made in ANOVA IX. Since the maxima counting procedure is not fully justified 
theoretically, no rigorous reason exists for the expectance of comparable mean in- 
tercepts. 

Some elaboration is necessary to justify the ANOVA choices and purposes. 
ANOVA I could be performed as a two-way ANOVA in which the component den- 
sity of the four groupings is the second variate, but little useful information would 
be gained beyond what we have extracted. 

A description of the random generation of component amplitudes and reten- 
tion times by an allocation of two random number seeds was given in ref. 2. The sets 
C, E and F; A and B; C and D; and K and L were generated, through a lack of 
foresight, with different seeds and different component distributions. The interpre- 
tation of any significant ANOVA from these groups was questionable. If a test was 
significant, we also performed a nested ANOVA on the identical data to verify that 
the variations observed arose from the main variate and not from the different seed 
choices. With this procedure, we decomposed randomly the members of each group 
into smaller groups and treated the variations due to seed choice as random factors. 
In all of the ANOVAs for which this approach was required, the variation arising 
from seed choice was insignificant relative to the variation in the selected variate. 
This approach both circumvented the need to generate vast amounts of additional 
data and removed any doubts about our conclusions. 

The variables of ANOVA III are the combined effects of noise and amplitude 
on the results predicted from the point model. The control group is a set of point 
simulations. Ideally, this analysis should be performed as a two-way ANOVA since 
these two variates are independent. There is, however, no meaningful way to intro- 
duce noise into a point simulation. 

ANOVAs V, VI and VII can be combined into a three-way ANOVA in which 
the combined effects of density, amplitude and noise on the empirical values of R: 
are determinable. An extensive generation of additional chromatograms and data 
would be required. This additional work was not undertaken here. 

RESULTS AND DISCUSSION 

The standard deviations calculated from our values of r+i are larger for esti- 
mations from point simulations than from chromatographic peak simulations. The 
respective simulations were calculated on two different computers with slightly dif- 
ferent random number generator library functions 2. The variances are not statisti- 
cally different with the one exception of the compared groups in ANOVA IIIb. 

Significant differences in the slopes from Sets L and M are reported for AN- 
OVA Id in Table II. The variable is amplitude. The attribute which distinguishes Set 
L from Sets A, C and J in ANOVA I is the baseline saturation range (a). The range 
in Set L varies from a baseline a value less than unity to a value greater than unity, 
whereas the principal range of the remaining sets is either less than unity (A, C) or 
greater than unity (J). 

In ref. 2, we suggested that the additive amplitude of overlapping compo- 
nent-peaks extends the width of a peak beyond its theoretical value. We then argued 
that the number of visually determined baseline peaks in highly saturated chromato- 
grams should be less than the theoretical prediction. This “third body amplitude” 
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hypothesis2 is justified by computer simulation and explains the significance of AN- 
OVA I. The confirmation of this hypothesis is discussed briefly below. 

The baseline-resolved peaks in our chromatograms were determined by visual 
inspection2. Any components contained in an amplitude response departing from 
and returning to the baseline were counted as one peak. The error in the estimation 
of baseline resolution in noiseless simulations, which arises from a loss of visual 
acumen and principally from a lack of uniformity in the baseline printed by our 
plotter, was conservatively estimated as 0.01 in. This value corresponded to 5 ADC 
units in the chromatograms produced. 

In a series of twelve simulations computed at eight different degrees of satu- 
ration, 200 components were distributed randomly over an 1 S-fold (10&l 800 ADCs) 
amplitude range. The number of peaks was then computed by scanning the calculated 
amplitudes. Any amplitude range lying between the two extremes of 5 units was 
counted as a peak. In addition, the number of theoretical peaks based on the Poisson 
model was calculated, as previously described for the point chromatograms, from 
the same distribution of retention times. The peak counts from each procedure were 
then averaged and plotted for comparison with eqn. 2. Fig. 2 is a composite graph 
of the data and clearly demonstrates that fewer actual baseline peaks than theoretical 
baseline peaks are observed when the baseline u value roughly exceeds the value 
unity. The bar bracketing each point is the standard deviation of the p/n, ratio. 

The departure found in ANOVA I is now explicable. The baseline peak counts 
obtained from the highly efficient (a < 1) chromatograms in Set L agree well with 
the predictions of the point model, whereas the peak counts from the poorly efficient 
(a > 1) chromatograms are less than predicted by the model. A least-squares fit of 
these data to eqn. 3 predicts a slope considerably higher than the theoretical value. 
Because the severity of the “third body” effect decreases continuously with increasing 
separation efficiency (decreasing a), the mean values of the intercepts for Sets L and 
M exhibit no statistical difference. 

0.4 

0.3 

P/n, 

0.2 

0.4 

P/n, 

0.3 

Fig. 2. Comparison of eqn. 2 and simulation results from baseline peak counting. Upper curve: theoretical 
peaks. Lower curve: peaks counted with error tolerance of 0.01 in. 
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Fig. 3. Logarithm of baseline peak counts from Sets J and L WSU.S reciprocal peak capacity with R: = 
1.5. Solid lines, theoretical; dashed lines, least-squares fits. 

Fig. 4. Ordered distributions of highly resolved components at two levels of efficiency and noise. Ampli- 
tude range: 400-1000 ADCs. The noise is Gaussian with cr = 50 AD&. 

The logarithm of the mean value of each of the peak counts from Set L is 
plotted against reciprocal baseline peak capacity in Fig. 3. The standard deviations 
in the logarithm of the peak counts are not depicted, and will not be depicted in 
similar graphs, for reasons of clarity. A departure in the value of In p (and therefore 
p) with decreasing peak capacity is observed relative to the theoretical line based on 
eqn. 3. In contrast, no significant difference between the slopes of Sets J and K is 
observed. In these saturated chromatograms, the baseline 61 range exceeds unity. The 
suppression of the magnitude of the baseline peak counts appears roughly constant 
for a values greater than 1 and less than 3. This observation is drawn from the 
distribution of data in Fig. 2. A plot of the logarithm of each of the mean peak 
counts from Set J versus reciprocal baseline peak capacity is also shown in Fig. 3. 
The value of the intercept is lower than the value predicted by theory owing to the 
lost peak counts. The least-squares slope, however, roughly parallels the theoretical 
line. 

The significant results from the computations of ANOVAs II and III both 
arise from the influence of noise on the correctness of baseline peak counts. The 
mean estimations of ti from both slope and intercept are lower in Sets E and F than 
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in Sets C and D. A small difference in the mean slopes of noisy and noiseless chro- 
matograms is established by ANOVA II. An a posteriori analysis3 clearly established 
a difference between the two noisy sets and the one noiseless set. A difference in the 
mean value of the intercepts calculated from the more noisy series and from point 
simulations is established by ANOVA III. Both departures arise from the same origin 
and will be discussed together. 

The difficulties in the visual determination of baseline resolution are multiplied 
by low signal-to-noise ratios. The difficulties increase because the eye cannot interpret 
the signal near the baseline independently of the noise, and false judgments of the 
departure from and return to baseline are easily made. This concept may be easily 
conveyed graphically. 

Fig. 4 is an ordered distribution of five components resolved at two levels of 
efficiency. The distributions were produced by our plotter and traced for clarity. 
Sub-figures 1 and 3, and 2 and 4, differ only in the presence or absence of noise. 
Using a criterion of baseline resolution, the numbers of baseline-resolved peaks in 
sub-figures 14 are respectively one, five, three and five. Two additional baseline- 
resolved peaks are falsely counted in sub-figure 3 because of the random excursions 
of noise below the estimated baseline. There is no analogous problem with the count- 
ing of baseline-resolved peaks in the two sub-figures of high efficiency because the 
components are well-resolved. 

Fig. 5 is a plot of the logarithm of each of the mean peak counts from Sets C, 
E and F against reciprocal peak capacity. The data are slightly shifted from the 
actual reciprocal capacities to accommodate all the values clearly. The arrows indi- 
cate the correct. position of the points, and the solid line is the theoretical prediction 
from eqn. 3 with R: = 1.5. It is apparent that a greater number of poorly resolved 
baseline peaks were visually detected in the two sets with Gaussian noise than in the 
noiseless set. This trend is not observed in the peak counts determined from the 
chromatograms of highest efficiency. The most probable explanation for this obser- 
vation is the counting of false low-resolution baseline peaks as discussed above. The 
peak counts from chromatograms of high resolving power are similar in number, 

Fig. 5. Logarithm of baseline peak counts from Sets C 
capacity. Solid line, theoretical with Rf = 1.5. 

(O), E (A) and F (0) versus reciprocal 
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Fig. 6. Logarithm of baseline peak counts from Set G verm reciprocal peak capacity. Solid line, theo- 
retical with R: = 1.5; dashed line, least-squares fit. 

whereas the counts from noisy chromatograms of low efficiency exceed the noiseless 
peak numbers. The combined effects depress both the slope and the intercept values 
estimated from the noisy simulations relative to the noiseless one. 

An examination of the peak counts from Sets C, E and F by a one-way 
ANOVA reveals that none of the peak counts differs statistically from the others at 
a given efficiency level*. The optimal values of both the slope and intercept of eqn. 
3 are nevertheless dependent on any correlated behavior of the peak counts as a 
function of efficiency. The mean slopes and intercepts from Sets E and F are therefore 
understandably significantly different from the results of Sets C and D even though 
the peak counts themselves are statistically identical at a given efficiency. 

We note that the increase in noise power from 30 ADCs in Set E to 50 ADCs 
in Set F is accompanied by a slight increase in the mean values of both slope and 
intercept. This increase is not statistically significant. As previously stated, an a pos- 
teriori ANOVA established the significant differences among Sets C, E and F to be 
between Sets E and F and Set C. 
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Fig. 7. Logarithm of maxima peak counts from Sets C (0), E (A) and F (0) versus the effective satu- 
ration, l/n. @ii). The theoretical intercept is indicated (0). 
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The magnitude of the Fisher ratio from ANOVA IV is indicative of the large 
differences in the mean slopes which are calculated from Gaussian and convoluted 
Gaussian baseline-resolved peak counts. The single variable is convolution. The ex- 
treme dissimilarity in slopes is unsurprising because the true representative compo- 
nent-peak width at baseline, x0, is not equal to 4oK with R: = 1.5. The peak capacity 
calculated from this value of x0 and eqn. 4 is not correct. The surprising observation 
is the statistical equivalence of the intercepts between Sets C and G. The rigor of the 
ANOVA is partially mitigated by the heteroscedasticity of and the required weighting 
of the data. The difference is nevertheless insignificant. A modestly accurate intercept 
is calculated for reasons analogous to those presented in the discussion of the “third 
body” effect. The magnitude of the perturbation introduced by the component-peak 
tailing decreases continuously with increasing efficiency. The peak counts obtained 
from relatively highly efficient convoluted Gaussian component-peak chromatograms 
are in rough agreement with the point model, and a least-squares fit of baseline- 
convoluted peak counts to eqn. 3 provides a poor slope but modest intercept. 

Fig. 6 is a graph of the logarithm of each of the mean convoluted Gaussian 
peak counts against reciprocal baseline peak capacity with R: = 1.5. As stated, it is 
observable that the influences of component-peak convolution on the results pre- 
dicted by our model diminish with increasing separation efficiency. 

We now devote our remaining discussion on the departures from our model 
to the influences of real chromatographic attributes on the calculated values of em- 
pirical resolution and intercepts from maxima counts. It will be recalled that the 
resolution is computed as a slope and is the mean resolution factor with which max- 
ima may be differentiated. If the number of maxima observed at a given efficiency 
changes in response to changes in the chromatographic attributes, we will observe 
variations in RZ. 

We first examine the effects of Gaussian noise. Fig. 7 is a plot of the logarithm 
of each of the average peak maxima counts against the effective saturation which is 
based on the known component number2. Fig. 7 is presented in a manner analogous 
to the presentation in Fig. 5. It is observable that the number of maxima peak counts 
decreases in noisy simulations of high efficiency. 

It was suggested in ref. 2 that the detection of each of two closely overlapping 
maxima would be more difficult in the presence than in the absence of noise. This 
concept is illustrated in Fig. 8, in which a component in each of two well-resolved 
pairs of maxima is lost with the addition of noise. These ordered distributions were 
generated by our plotter and traced for clarity. It is clear from Fig. 8 that noise 

Fig. 8. Loss of maxima with noise. Amplitude: 500 ADCs. The noise is Gaussian with u = 50 ADCs. 
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diminishes the resolubility of maxima in both lowly and highly efficient chromato- 
grams, whereas the loss of noisy maxima is found principally in the highly efficient 
chromatograms. 

A second possible origin of the low maxima count is the loss of graphic quality 
and resolution from our Versatek plotter. A brief description of the plotting char- 
acteristics of this unit will clarify this hypothesis. The amplitude in the plots of the 
overlapping components is represented by a vertical bar of appropriate size at each 
of many equally spaced positions along the plot. In Fig. 1, the discreteness of and 
the disjointedness between the vertical amplitude segments can be faintly observed. 
The distance between amplitude segments is constant and independent of the length 
of the plot. In our generation of the chromatograms, we arbitrarily kept the scaling 
along the abscissa at 10 min per inch. Therefore, the components with small standard 
deviations in the chromatograms of high resolving power are composed of few am- 
plitude bars per component, whereas the components with large standard deviations 
are composed of many amplitude bars per component. The plotting resolution in the 
highly efficient chromatograms is therefore less than the resolution in the poorly 
efficient chromatograms. This disjointedness between segments in the chromatograms 
of highest efficiency was most noticeable in the presence of noise. The visual identi- 
fication of maxima is therefore more difficult because of poor resolution. 

Another consequence of the disjointedness of the chromatograms must also be 
considered. It is possible that the number of maxima in the highly efficient noiseless 
simulations is underestimated. If the counts are significantly underestimated, then 
the empirical resolutions for the noiseless simulations will be in error. 

The resolution of the plotter and noise are two independent variates of the 
synthetic chromatograms. To determine the possible significance of each attribute, 
a two-way ANOVA was performed with additional computer-generated chromato- 
grams. In a two-way ANOVA, each of two variates is changed independently among 
different groups to determine the significance of each3. In our study, six chromato- 
grams with different component distributions were generated over an 1%fold ampli- 

TABLE III 

TWO-WAY ANOVA ON NOISE AND PLOTTING RESOLUTION 

Set Maxima (mean f Source of Degrees SS MS F 
standard deviation) variation of 

freedom 

(a) No noise, high 134.00 f 3.95 Noise 1 145.04 145.04 F1+zo = 10.63 
resolution 

(b) No noise, low 131.00 f 2.83 Resolution 1 222.04 222.04 Fi,20 = 16.28 
resolution 

Interaction 1 22.05 22.05 F1.20 = 1.62 
(c) Noise, high 129.83 f 3.31 Within 

resolution subgroups 20 272.83 13.64 

Total 23 661.96 
(d) Noise, low 123.00 f 4.47 

resolution; 
F*,zo = 4.35 
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tude range (100-1800 ADCs) for each of four groups. TWO of the groups were corn_ 
posed of distributions which were identical in plotting resolution and density (a) with 
the chromatograms of highest efficiency from Sets C, E and F. These groups differed 
only in the presence or absence of Gaussian noise with D = 50 AD& The graphical 
resdlution in the chromatograms of the other two groups was increased by length_ 
ening the plots. The density within these groups was also identical with the density 
in the chromatograms from Sets C, E and F. These groups also differed in the pres- 
ence qr absence of Gaussian noise with 0 = 50 ADCs. The ANOVA is presented in 
Table III. The procedure for this computation is given in ref. 3. 

Each of the two variates is significant. The inferior resolution of the shorter 
plots and the presence of noise both contribute to the undercounting of peak maxima 
composed of highly resolved component-peaks. An examination of the mean maxima 
counts reveals that the principal deviation is found in the counting of noisy maxima 
from low-resolution plots. The insignificance of the interaction Fisher ratio indicates 
that no synergism or interference between the two variates exists3. The additivity of 
the sums of squares (SS) and the degrees of freedom is indicated by the totals in the 
fourth and fifth columns. 

The means of the maxima peak counts from the two sets of noiseless chro- 
matograms are insignificantly different, and the logarithms of the mean values differ 
by only 0.5%. We therefore have confidence in the integrity and correctness of the 
K values calculated from our noiseless simulations. An error exists in the & com- 
puted from Set F. We have chosen not to re-evaluate its magnitude for the practical 
reason that the minimum signal-to-noise ratio is two. This situation rarely exists in 
chromatography because of sophisticated pre-concentration techniques. The numer- 
ical value is not a highly important quantity. 

It might be argued that we have added an unrealistic amount of Gaussian 
noise to our synthetic chromatograms. They were generated prior to the conception 
of the maxima counting procedure. We postulated that large amounts of noise would 
be required to observe any perturbation in the values of 6 obtained from noiseless 
baseline peak counts. We then applied the maxima counting procedure to the same 
chromatograms to circumvent the time and cost of generating additional plots. In 
general, however, we may conclude that the effect of noise on the magnitude of the 
empirical resolution factor is small. The similarity between the magnitude of the R’, 
factor calculated from the data of Set E and all of the other empirical values, except 
the ones from Sets F and G, is indicative of this small influence. The minimum 
signal-to-noise ratio in Set E is three, a large value, but the resolution factor is es- 
sentially the same as the value computed from the data of Set C. 

A significant difference in the empirical resolutions calculated by the utilization 
of the maxima counting procedure with Gaussian and convoluted Gaussian com- 
ponent-peak chromatograms was established by ANOVA VIII. The explanation for 
the deviation is similar to the one previously presented to account for the significantly 
high slope calculated with baseline convoluted Gaussian peak counts. The number 
of maxima observable in the highly efficient separations is comparable for both com- 
ponent shapes, whereas many maxima are hidden under the tailing edge of the low- 
efficiency convoluted component-peaks and are not observed. A fraction of these 
hidden component-peaks is observable in the low-efficiency Gaussian chromato- 
grams. The mean intercept calculated from application of the maxima counting Pro- 
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Fig. 9. Logarithm of maxima peak counts from Set G versus the 
squares fit to data. The theoretical intercept is indicated (a). 

effective saturation. Solid line. 

cedure is statistically equivalent to the mean intercept calculated from the baseline 
counting procedure (ANOVA IXe) because the perturbations arising from the com- 
ponent-peak tailing decrease with increasing efficiency. 

Fig. 9 is a graph of the logarithm of each of the mean maxima counts from 
Set G ver.ru.s the saturation factor. The resolution factor is significantly different from 
the value computed from the data of Set C, and the increased magnitude has a 
physical meaning. Maxima are more easily obscured at a given efficiency by the 
tailing edges of the convoluted Gaussian component-peak amplitudes than by the 
Gaussian component-peak amplitudes. On the average, a greater separation between 
two maxima is required for visual differentiation. The average resolution factor from 
Set G is therefore larger than the factor from Set C. 

The final two significant ANOVAs may be briefly presented. These both depict 
the differences in mean intercept values calculated from the applications of the two 
different counting procedures. The results of ANOVA IXd are indicative of the sta- 
tistical difference between the intercepts of the noisiest chromatographic series. The 
reasons for the depression of the empirical resolution value, and therefore the inter- 
cept, were previously discussed and need no further comment. 

In general, the baseline and maxima counting procedures both predict inter- 
cepts which are slightly smaller than the theoretical values. This result occurs in the 
application of the baseline-resolved peak counting procedure because a return of the 
amplitude envelope to baseline between two components separated by six average 
standard deviations is not observed over all amplitude ranges. The counted values 
lie slightly below theory for this reason and, as a result, the intercept lies below 
theory. The intercepts fall short of theory with the application of the maxima count- 
ing procedure mo.st probably because all peak maxima which are separated by the 
empirical distance x0 are not observable and are hidden under the envelope of the 
overlapping component-peak amplitudes. 
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This general observation does not apply to Set L. The departure from the 
model of the mean calculated slope in Set L, which arises from the “third body” 
effect previously discussed, raises the mean intercept value of Set L above the theo- 
retical value as shown in Fig. 3. The mean value from the maxima counting procedure 
lies below theory, and a significant difference is observed. 

We conclude our study with a commentary on the meaning and importance 
of our observations. Most importantly, we observe that, in spite of several significant 
ANOVA procedures, the utilization of our overlap model with both counting pro- 
cedures is a source of good estimates of the mean component number. We mean by 
the word “good” that more accurate information is available on this number with 
the application of our model than is available from a counting of peak maxima in 
synthetic chromatograms of extraordinarily high efficiency. 

We note that the amplitude range of Gaussian component-peaks, the density 
and noise do not result in large erroneous estimations of rR from the slope and 
intercept values which were calculated from the application of the baseline-resolved 
peak counting procedure. The identification of the mean component number with 
the slope calculated from convoluted Gaussian baseline-resolved peak counts is er- 
roneous, but a reasonable estimation is accessible via the intercept. The baseline 
counting procedure is consequently established as a potentially successful means by 
which one may apply the statistical model. 

We do not consider the methodology unequivocably established for the fol- 
lowing reason. One important attribute which we have not examined is baseline drift. 
This variable is important, and its effects on our predictions of rii need characteri- 
zation. We have not undertaken this work for this publication. We will confine our 
remaining discussion to our findings on the peak maxima counting methodology. 

The number of observed maxima is dependent on the scientist’s ability to dis- 
tinguish between maxima in a chromatogram. We have established by the two-way 
ANOVA that this number may be underestimated, especially in the presence of noise, 
from a chromatogram of poor graphical resolution. Therefore, a chromatogram from 
which maxima are counted should be of sufficient length for one to observe all the 
maxima clearly and distinctly. This point is perhaps intuitive and superfluous, but 
we now recognize its importance from our own work. 

In general, we have established a series of empirical resolution factors with 
which the mean component number may be estimated from both slope and intercept 
of a In p versus l/ne plot. These factors initially were postulated to be functions of 
the realistic attribute of chromatograms under investigation in this paper. The nu- 
merical values of the factors are surprisingly independent of the limited amplitude 
and density range examined and small levels of noise but do exhibit a dependence on 
component-peak asymmetry. The insensitivity to density may be roughly understood. 
As the number of components per unit separation space increases, the potential num- 
ber of observable maxima increases. However, the number of maxima which overlap 
and are lost in the amplitude envelope also increases. A counterbalance is apparently 
established over the examined range. The insensitivity of the resolution factors to the 
amplitude range is not understood. It is reasonable to hypothesize that the number 
of observable maxima will decrease with increasing component amplitude range be- 
cause small maxima will be obscured by amplitude envelopes of increasing size. Our 
computations refute this hypothesis. 
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We must emphasize that the observed insensitivity of the resolution factors to 
the amplitude range may arise from the uniform amplitude distributions with which 
we have generated our synthetic chromatograms. The resolution factors computed 
from the maxima peak counts of overlapping components which are non-uniformly 
distributed in amplitude may exhibit a dependence on the non-uniform amplitude 
range. 

We infer from the magnitudes of the resolution factors calculated from the 
data of Sets C and G that, in general, empirical resolutions which are calculated from 
counts of observable maxima in convoluted component-peak chromatograms vary 
as a function of the a/z ratio. A family of RI values is calculable as a function of 
a/r. We have not undertaken the extensive work required to compute this family. We 
shall argue, however, that the numerical value of the resolution factor is immaterial 
if one is willing to estimate the mean component number from the intercept alone. 

We may write the reciprocal capacity in eqn. 4 as 

where fi = 4R:. In this equation, Rg is an empirical resolution value which may be 
unknown. The least-squares equation for the intercept a of a linear function is related 
to the abscissa (x) and ordinate (_Y) values of the fitted data and to the weighting 
factor w for each ordinate value and is4 

(8) 

If we substitute the ith reciprocal capacity for variable xi in eqn. 8, we observe that 
the quantity a cancels in the calculation. The numerical value of the resolution factor 
is not required to calculate the intercept. Only the relative, and not the absolute, 
reciprocal capacities are required for this computation. The choice of the reciprocal 
capacity axis is arbitrary, but it is essential to scale the spacing between the points 
for the in p versus l/n= plot relative to the component standard deviation per sepa- 
ration space ratios a/X. We note that the statistical equivalence between the mean 
intercepts of Sets C and G (ANOVA IV) is now understandable in light of the de- 
pendence of the intercept value upon only the relative reciprocal capacity values. 

The average component standard deviations, which are required to calculate 
both the absolute and relative peak capacities, are in principle calculable from the 
chromatograms. Practically, one does not usually know if the observed maxima are 
single component-peaks or singlets. An accurate estimation of these quantities can 
be made by averaging the standard deviations of known pure components which are 
representative of the analyte in question l. The chromatographic conditions under 
which these measurements are made should, of course, be identical with the condi- 
tions under which the analyte is partially resolved. 

If the logarithm of each of the maxima counts is plotted against a relative 
reciprocal capacity and significant departures from linearity are observed, then the 
resolution factor is changing as a function of chromatographic efficiency and p is not 
constant. We did not observe significant departures from linearity in our simulations. 
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In general, a poor estimate of ti should be expected from nonlinear data. 
It was stated earlier that the intercepts computed from the maxim counting 

procedure were less than the theoretical values. The average percentage error with 
respect to theory is calculated from the nine appropriate values of intercept compiled 
in Table I and is 0.0627 f 0.0312. This value may be used, if desired, to calculate 
a first-order correction to the experimentally determined intercept. 

In the application of our model to real chromatograms, in which the integrity 
of our hypothesis of random component distribution will be questioned, the value 
of the slope may prove more useful than the intercept. In the light of the uncertainty 
of this hypothesis, the reader may question the usefulness of an extensive character- 
ization of synthetic chromatographic data on which we have imposed the condition 
of random component distribution. Our studies have revealed many departures from 
theory which arise from realistic properties of chromatograms which we have not 
modeled. Only with a knowledge of these attributes can we separate their effects from 
departures from the statistical hypothesis. 

The general magnitudes of the empirical resolutions calculated from the Gauss- 
ian component-peak chromatograms may disturb some physical scientists. The over- 
all magnitude of the K factors calculated from the Gaussian component-peak chro- 
matograms is approximately R: = 0.5. The minimum x0 with which two Gaussian 
components of equal amplitude are resolvable is 2a, with K = 0.5. A larger value 
of x0, and a greater R: value, is required to differentiate between the maxima of two 
Gaussian components with unequal amplitudes. One might argue that our empirical 
values should therefore be somewhat larger. 

The least-squares intercepts computed from the maxima counting procedure 
lie below the theoretical values, as previously discussed. We allowed the intercept to 
assume its optimal value in our computations of the resolution factors. A rigorous 
fit of the data to theory, with the intercept fixed as In fi, would result in the calculation 
of higher values of empirical resolution factors (Es x 0.7 for Set C), but the quality 
of the fit to data would be poor. If this resolution factor were then used to compute 
a peak capacity for the fitting of maxima, the magnitude of the intercept calculated 
would be independent of the resolution factor. However, the slope calculated from 
the least-squares procedure would be smaller than a slope computed from the same 
peak counts but a peak capacity determined by Rs x 0.5. The mean component 
number would therefore be underestimated from the slope. We arbitrarily chose to 
compute the resolution factors so that estimates of 2 could be made from both slope 
and intercept. 

In the light of the independence of the intercept value and the empirical reso- 
lution, it is reasonable to ask if our extensive calculation of empirical resolution 
values was an unnecessary undertaking. We believe the proper answer to this question 
is no. Our work has definitely established that approximately the same number of 
maxima peaks, which are composed of pure Gaussian components, will be resolved 
at a given level of system efficiency irrespective of the density and amplitude range 
examined and small amounts of noise. This statement is correct because the empirical 
resolution, which determines the system’s peak capacity, is largely independent of 
these variables. The number of peaks is then exclusively determined by this well 
defined peak capacity and the mean component number. These are the only attributes 
on which eqn. 1 is dependem The simulated chromatograms are well-modeled by 
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Poisson statistics and point processes in which the peak maxima are represented by 
points. 

We have recently developed successful procedures for the estimation of the 
mean component number from the slope and the intercept of a single “point chro- 
matogram”. It is therefore not unreasonable to propose a study in the feasibility of 
the determination of the mean component number from a single chromatogram of 
Gaussian component peaks via a counting of peak maxima, The success or failure 
of this approach will be presented in a future publication. 
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